C

Introduction to
computer electronics

O

I

UKIT |

INSTRUCTIONS FOR ASSEMBLY AND USE

LIMROSE ELECTRONICS

LYMM CHESHIRE

HOW TO ASSEMBLE COMPUKIT 1

The assembly of Compukit 1 is very simple and should take you about an
hour to complete. You will need & small soldering iron and & pair of cutting
pliers to assemble the compments onto the printed circuit board. The kit containss

One Transistor pack with 14NPN Silicon Transistors.
One Diode pack with 18 Gold-bonded Germanium diodess
One Registor pack I with 25 10 K Reaistors.
One Hesistor pack II with 15 1 X Resistors and 2 150 Ohms,
One Terminal pin pack =
(ne Logic Indicetor pack with 2 wire-ended bulbs,

2 plastic clips and

2 High gain Transistors.
One Printed Circuit, 53"x 9§"
One 4% Volt Battery, Ever Ready Type 126.
One Instruction Book.
Wire, about 6 to 8 yds.
Solder, about 4 ft of pre-fluxed type.

ing Iron, 15-20 W, 250 Volt a.c.(31/- each)
Cutting Pliers -

Solderless patch lead packs (27/6 Tor & dbuble=ended~lends)

All compenents supplied are in perfect condition, bave been tested to our
specifications and sre reedy to be essembled. The kit containg itHeweXikemiZansietors
end two extra diodes to serve as spares in case you damage eny during assembly.
liost of you should have no difficulty in identifying the components.However,

) those of you not familiar with transistors, diodes, and resistors should find the
EHUALA following notes useful.

0
2 4 1x2% + Ox2

10 = 1x2°+1x
1... numbvers from O f;o 9 r,;e.,
Whereas in binary arithmetic

should read ao

Poge 3 Eq.(l-i) should read a8

o O Transistors s A transistor usually consists of a small metal or plastic body having
) see e
Iace 4 Line 1

. D three wires sticking out of it at one end. Fig. 4.1 shows the outline of two
yeie 5 Line 6 should rend as Basic OR ghould rend o9 1?a6i-c NAD types of transistors,together with the symbol for the NFN type used in the kit.
;‘;9 T FigelaT }nsic NOR shiould read as lmslé ol The three leads, marked e, b and ¢ in the figure, can be easily identified on the
=8 lf,\s-jc D should rend 88 %ua}c e transistors themselves by their relationship to the shape of the body, or the 'tag'.
& rend as Lasl B
Basic NAND should reo = X+ X=1 y
= o+ X=X Each di 3 £ ; :
. + 00 0.0=0 ; s Diodess Each diode consists of a small tubular glass body, either with an
pacce 9 Line 15 Bho“;i rem; ':: © .. [he first lavw, equﬁtli‘uu'l)" u ‘identification' ring on one side or with cne lead shorter than the other.
; 5> Line 2 ghould read & Syt sver, except 000, using eecescs
Fege 9 tarn 3.2 1 bit numver,

Diodes conduct fowards the ring, or towards the shorter lead,; as the case may be,
fige 4.2, (The latter coding is not generally used, but is a aspecial coding peculiar to
this kit onlye)

3 Para 5.3 Line 2 ghould read 88

Lo
") -
F e 1ag - \
Direction of current Value bands
b /Ring /
e G—
C
o @ NPN Transistor —jg— DIODE —AAV— RESISTOR
e
FIG Al FIG A2 FIG A3

Registors s The resistors have an opague body with colour coded bands to indicate
their value, fig.A.3. The resistors supplied to you have coded rings as follows:
10 K~ Erown, Black, Orange 1 K- Brown, Black, Red 150 Ohm~- Brown, Green,Brown.

ASSENELY PROCEDUHE

The Printed Circuit Board has tinned copper tracks on one side, and is
screen printed on the other side with logic symbols and component identifications.
On the printed side, the words 'Compukit 1' roughly divide the board into two balves.
The upper balf is the patching area and the ferminal pins are assembled in this area.
The lower half is marked where all the electronic components, except the bulbs,
are to be mounted. The two transistors supplied with the logic indicator pack
occupy the transistor positions on the extreme left of the board. Do net mix
these transistors with the rest. Now proceed as followss

1. Ingert resisbtors in the lower half of the board as indicated, and push the
leads in so that the resistor body comes into contact with the boards Solder
the leads on the other side and cut off excess leads.

2. Spread and push the leads of the tramsistors through the holes marked with
circles around them, being careful to 'align' the leads correctly so that the
lemmiter, base and collector leads go through the appropriate holes., Only two
typical transistor positions have been marked with e, b and c lead positions.
Solder the leads on the other side, using minimum heat and a small amount of

solder, Cut off excess leads. Qverheating may damage the tTansistors.

3o Align diode leads so that they conduct in the direction of the arrow printed
on the board i.e. with the identification ring or the shorter lead upwards.
Push in the leads affer bending them gently, and carefully solder on the other
side of the board using minimum heat and a small emount of solder. Overheating

during soldering can damage the diodes if prolonged contact with the hot iron

iz maintained for more than a few seconds at a time.

4. The terminal pins should now be inserted from the copper side and gently pushed
in as far as they will go. Solder the pins to the copper side lightly.

5« Now carefully assemble the wire-ended bulbs in the plastic clipsyand push the
clips in the " dia. holes just above the area marked 'lLogic Indicator'. Push
the wire ends of the bulbs through the holes for them and solder on the copper
pide. Cut off any excess leads.

The agsembly of the basic kit is now complete. If you have purchased the
solderless patch lead packs as optional extras, you can assemble the patch leads
from them by attaching a socket at each end of a small lengzth of the flexible wire
supplied. The bare wire end is soldered to the metal part, and the plastic part
is pushed on top of it from behind to complete the assembly.

USING CQMPUKIT 1

You may use the cardboard box in which the kit has been supplied
as & base for your assembled board. The battery can be left in the box in its
original position forming, together with the inserts, a platform upon which the
assembled board can remain. Once the battery connections (see below) have been
made, the board is ready for use.

You can mgke connections to the terminal pins by lightly soldering a wire

to them to construct the various circuits shown in the instruction book. Alterations

to the circuits can be made by de-soldering and making new connections. Using the
solderless patch leads it is, of course, much easier to make any circuit simply
by pushing the sockets on to the terminal pins.

IESTING THE ASSEMBLED KIT

l. Connect the battery to the terminals marked 'Battery' by means of two short
leads, taking care that the polarities are correct.

2. Both the Logic Indicator lamps should now be partially lit.

3, Attach a wire, or patch lead, to the input pin of one of the logic indicator
lamps, and connect the other end to the Logic 1 and Logic O buses alternately.
Logic 1 should increase the brightness of the lamp filament, whereas logic O
should cause no change in the brightmess level.

4. Check NOR gates one by one, With no inputs connected, the output should be
at logic 1. If any input is connected %o logic 1, the output should be logic O-

5¢ Check NAND gates, With no inputs connected, the output should be at logic O,
If any input is comnected to logic 0, the output should be logic 1.

If the assembled kit passes these tests, the kit is now ready to be used.

If however any of the tests fail, look for unsoldered or poorly soldered connections,

broken copper tracks in the printed ecircuit board, or faulty components. Make gure
that the diodes and transistors have beem correctly connected.

THE DIGITAL COMPUTER 14

Someone once said that he could build complex structures if only he
could think of the first thing that had to be done! Having overcome the initial
mirdle, the remaining steps are likely to fall readily into place. Actually this
is not far from the truth, end with luck and some effort on your part it should
be possible for you to understend how digital computers work. Now ‘.ohgt you have
taken the first step, you may even eventually be able to build a digital
computer for yourself. First of all, we will have a brief look at the general
principles on which digital computers are based.

Fig.1l.1l shows a block disgrem of a digital computer, from which you can
see the various parts and their functional relationships.A digital computer
receives the problem and data through an Input Unit. This usually consists of
a paper tape reader, a megnetic tape uni$, or more recently introduced optical
character reading units. A step by step procedure for working out the resultis,
called a programme, is fed to the computer vie the input unit. These instructions
are stored in a Memory inside the computer, for rapid retrieval later on when
required. The calculating function is performed by the Central Processing Unit,
also called the Arithmetic Unit. However, no calculations can be really performed
without the overall control and timing provided by the Cotrol unit. rhe results

of computaiion are usually printed on

an electric typewriter, or a high speed
line printer, which constitutes the
Output unit. This represents a simplified

I—l overall view of a digital computer.

|
INPUT MEMOR cPU OUTPUY

All signals in a digital
computer have to be suitably coded in
order to represent the numerous physical
variables which are of interest to
commercial, sciemtific or other users.

liost digital computers use the Binary
code for representing alpha-numeric
data. We will now consider some aspects
of the binary code.

FIG 1.1

BINARY CODE l.1

Design of computers is greatly simplified by choosing certain codes,
rather than others. We are all very familiar with the decimal number system, or
the decimal code, which wnfortunately is not entirely suitable for use in
computers using electronic circuits. The main reason for this is that most
electronic gevices have basically only two states (a circuit is either on or
off), forming a two-state i.e. a binary system. Whereas in a decimal systerw,
there are numbers 0,1,2,3,4,5,6,7,8 and 9, the binary system has only two numbers,
O end 1. Certain 'digital' machines, such as desk calculators are sometimes made
using the decimal code, especially if they do not use many -electronic components.

BINARY NURBERS 1.2
Numerical calculations can be carried out in a digital computer using
the binary system according to standard rules, same of which we will now
examine., In the decimal notation, to express a number greater than 9 we use a
gystem of 'weighted' positions using 10 as the base, thus
3127 = 33103 + 1x102 + 2x10! + 7x100 (1.1)

In the binary system, large numbers sre represented in a similar menner
using 2 as the base. Thus, a large binary number is maede up as follows,

101101 = 1x25 + 0x24 + 1x23 + 1x22 + 0x2l + 1x20 (1.2)

1]

110 = 1x22 + 1x2! + 1x0 (1.3)

It is easy for you to work out that the binary mumber 101101 is equal to
decimal 45, and that binary 110 is equal to decimal 6.

The binary equivailents of decimal numbers from 1 to 9 are,
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
BINARY ADDITION 1.3

Adding two binary numbers is very similar to adding two decimal numbers,
except that in a binary system the highest number allowed is a 1 whereas in the
decimal system the corresponding number is 9. In binary addition, when a 1 and &
0 are added together, the result is & 1 and there is no carry. If a binary 1 is
added to another binary 1, the result is a O and there is a 1 carry. Thus, we
add as follows,

101 (Decimal 5 111 (Decimal 7)
010 (Decimal 2 101 (Decimal 5)
111 (Decimal 7 1100 (Decimal 12)

In the second example, adding 1 and 1 generates a cerry in the first,
second and third places to produce the 1's in the third and fourth places.

BINARY SUBTRACTICN 1.4

There are several methods for performing binary subtraction, but the
simplest of them all to understend is the 'direct method'. Example of binary
subtraction using this method is,

1001 gDecimal 9%

101 (Decimal 5
0100 (Decimal 4

To subtract 1 fram O in the third column, a borrow of 1 was made from
the fourth colum, which effectively added 2 fc the third colum to produce a
1 there and a O in the fourth columm.

TWO'S COMPLEMENT ARITHMETIC 1.5

The method outlined above is, however, not very convenient for use in
a digital computer, If this method were to be used, seperate circuits would be
required to perform binary addition and subiraction. For this reason, the
subtraction in a digital computer is performed by adding the equivalent
‘negative' number, Such a number is known as the ‘complement' of the original
number. Most digital computers use 'Two's Complement', both to represent
negative numbers and to perform binary subiraction. The two's complement of a
binary number is defined as the number which when added to the original number
will result in a sum of all zeros except in the ‘overflow' position. The
easiest method of finding a two's complement for e binary nuwker is %o first
obtain the 'one's complement' and adding a 1 to it. One's complement is formed
simply by setting each bit to the cpposite value. Thus,_

0101 (Nuwbor)

1010 (Gnua’s complemont)
0001 (Add 1)

1011 (rwo's complowent)

subtraction 4s perfoimod uplng the two's complement of the numbexr to bo
subtraoted. That is, to subtract A irom I, we exprese A in its two's complement
and add the velue of B to it, Thus,

0101 (A)
101l (Two's complement of A)
1001 (Add B) ’
1 0L00 (lieult B-A, ignoring the 'overflow')

BINARY LOGIC 1.6

In sddition to using O snd 1 for expressing numbers, they are slso used
in performing logic. Rules of binery logic form a Boolesn algebra and are
explained in a later section.

Eoolean algebra is named after George Boole, a British philosopher. who
was meinly interested in applying logic to man's intellect end thought
process. Boole's logic is based upon the premise that a proposition is either
ttTue! or 'falge'. True statements are given a logical value of 1, whilst false
statements have a value of O.

Whereas in binary arithmetic 0+0=1, O+1=1, and 1+1=10, in the binary
logic of Boolean algebtra, the symbol '+' is used to represent the 'OR' function.
Thys in logic 0+0=0, 0+1=1, and 1+1=1. In Boolean aslgebrs, AB or A.B
Tepresents the 'AND' function. In terms of 1 and O, the results are 0.0=0,
0.1=0 and l.1=1, which are similar to the Tules of ordinary multiplication.

In addition to 'AND' and 'OR' functions, there is alsc a 'NOT' function
in Boolesn algebra, which is indicated by a 'bar' over the gymbol. Thus X (NoOT 4),
X (NOT X) etc. If A is O, then X =1, and if A=l then A=0.

Binary logic functions of NOT, OR and £ND taken together are more then
sufficient for cerrying out all computation and control functions in a digital
computer, [hese can also be used to form the wemory. There are many electronic
devices which can be used to perform these logic functions in a digital computer.
Most practical electronic logic circuits utilise relays, diodes, transistors,
registors end magnetic cores. l.ore recent additions to this range of components
are tunnel diodes, integrated circuits and field-effect transistors. It is
possitle to perform the logical operations of OR and AND using diodes and
resistors only. The NOT function cennot be directly performed in this manner.
Circuits using transistors can perform the NOT operation directly.

Electronic logic circuits used in a computer are generally known as
1 1
gates'.

DIOLE-RESISTOR LOGIC GATE 1.7

A diode is a device which ideally conducts current in ome direction
only, and in the simplified discussion which follows we will assume that the
diodes have zero forward resistence and infinite reverse resisgtance.

There are two general diode-resistor configurations which cen be used
to perform logic operations, fig.l.2 end 1.3.

+v
FIG 1.2 I OR Gate
3R
2 o P T
2 e ————o T
b @i
b e——— 2R
FIG 1.3 [
AND Gate oL

In fig.l.2, if either input is at logic O i.e. zero volts, a current
would flow through the resistor R and the output at T will be logic C. To
obtain a logic 1 output at T, both inputs a and b must be at logic 1. Thus,
in terms of Eoolean notation for binary logic, we have,

T = ab (i.e. T equals 1 if both a and b are 1) (1.4)

This is the basic diode-registor AND gate.

For the circuit in fig. 1.3, output T will be at logic 1 if either of
the inputs a or b is at logic 1. This is the basic OR function given by,

T= a+b (i.ee T equals 1 if either a or b is 1) (1.5)
TRANSISTOK-DIODE-RESISTOR GATE 1.8
The diode-resistor gate can perform the NOT operation if a ftransistor

is added to the gate output. This transistor alsc provides useful power gain
which can be used %0 drive more circuits from a single output. Because diodes

do not have a zero forward resistance, there is serious deterioration in voltage
levels if multiple diode gates are used in series. Inclusion of the transistor
Frovides the necessary amplification to counteract this deterioration.

Many of you are, perhaps, familiar with the operation of a transistor.
In brief, the transistor acts as a 'current amplifier' and a small 'base current'
can be used to control a larger current in the 'collector' circuit. The ratio
between the controlled collector current and the controlling base current is
known as the 'gain' of the transistor. Typical values for current gains in
trensistors are between 20 to 150.

Some schematic logic circuits using transistors are shown in figeli4a, ®
and c. In the configuration shown in fig.l.4a, if the inputs a and b are both
at logic 1, the potential at the bese of the transistor is sufficiently high to
tum it ‘on'. This results in T being pulled down to logic 0, thus,

T=ab (i.e. T eguals O if both & and b are 1) (1.6)

This operation is known as NAND, which stands for NOT AND taken together.

+v +V +Vv
FIG 1.42 1.4b 1.4c
>
3
3
2 o—ig—vq o A Py o 3 e\ -
b e—ig—-1 b e—pi—vg b e—ppy—'

T=a

-4
-
"
©
o

Circuits in figs.1.4b and ¢ are used to perform the logic NOR (or NOT OR)
operation, If either of the inputs a or b is at logic 1, the transistor is tumed
on and the output goes to logic 0. Thus,

T=3+b (i.e. T equals O if either a or b is 1) (1.7)

The circuit in fig.l.4c uses only resistors and transistor, and is known
as 'Registor-transistor logic'.

TRUTE TABIES 1.9

Binary logic can be conveniently represented in tabular form. This is known as
a 'Truth table' and is commonly used to show the relationship between logic variables.

For example, the iruth table for NOT, OR and AND functions can be written as,

a Q0 LN
b 010 1

T=a+b 0 1 1 1 (logic OR)

T=a.b 0 0 0 1 logic AND)
a 1.1 0 0 NOTa;
v 1 010 (NOTD

Similarly, the truth tables for the NOR and NAND functions are given as,

a 0

14 0
T=&a% 1
T=&T 1

OO
HOOHK
OO+

LOGIC IN COMPUKIT 1 1.10

You have been provided with logic gates in Compukit 1, similar to the
ones which we have just discussed. The circuits used ere shown in figs. 1.5s, b,
¢, d and e and have been specially selected for their simplicity and low cost.
Fig. 1l.5e; the logic indicator circuit, is merely a NOT gate driving a small
lamp. This lamp trightens up when the input is at logic 1. The fransistors used
are NPN silicon type and the diodes are gold-bonded germanium types.

P+4.5V +4.5V
LAMP
$i0K 1K 6V 60ma
a oflp——i T
b S Input 150R
c.2 Input NAND e.lLogic Ind. i
+4.5V +4.5V
10K 1K 5 :E"'K 1K
3 e M= -——n—1
10K T T
b o= A4 b o——jg FIG 1.5
10K
€ o——AMF— ¢ o—i—
b. 3 input NOR d.3 Input NAND 4
NOT LOGIC WITH NOR AND NAND GATES 1.11

It is obvious from the previous discussion, that the logic NOT operation
can be performed using NOR and NAND gates, if only ome of the inputs is used.

10GIC SYMBOLS l.12

In designing large digital systems, such as digital computers, it is
convenient to use symbols to represent different operations. Unfortunately, there
is. no universally accepted set of symbols and many different types are in
common use. The two types most commonly used in this country are specified in the
British Standards B.S. 350- Graphic Symbols for Telecommunications, and the
American Nilitary Standards, MIL-STD-806 B Logic Symbols. Some of the most
importent of these are shown in figs.l.6 and 1.7 for your reference. ’.'Ebroughout
these notes, however, we have used the more popular MIL-STD-806 B Logic Symbols.

=0~ =0~

Basic OR Basic NOR
Basic AND Basic NAND

FIG 1.6 B.S.350 GRAPHIC SYMBOLS FOR
TELECOMMUNICATIONS

Basic OR Basic NOR NOT Gate

Basic AND Basic NAND Wired-OR

oy

FIG 1.7 MIL-STD-8068 LOGIC SYMBOLS

LOGIC WITH COMPUKIT GATES

OUTPUTS WITH INPUTS DISCONNECTED 2.1

With no inputs connected, the output should be a logic 1 for NOR gates
and a logic O for NAND gates.

NOT OPERATION 2.2

NOR and NAND gates can be used to perform the NOT operation as shown in
fige2.1 and fig.2.2. Only one input is used.

LOGIC 1 LOGIC 1
LOGIC 0 LOGIC 0
Logic D
Indicator
FIG 2.1 FIG 2.2

Output logic level should be the complement of the input, i.e. the
logic indicator lamp should brighten up when the gate input is connected to
logic O and should be off when it is connected to logic 1.

NOR FUNCTIONS Tm=a+b, and T ma+b+c 2.3
Connect the output of a 2 input NOR gate to a logic indicator lamp.

Note that the lamp goes dim if any one of the inputs is connected to logic 1.
Verify that this gate satisfies the truth table given in section 1.5.

Repeat with a 3 input NOR gate, and verify that the following truth table

is satisfied,

05T bl o M o i Lol (o o o
B oot et ¢ eRY
¢ 000101101
T 100000 OO
NAND FUNCTIONg T=a.b, and T=a.b.c 2.4

The 2 input NAND gate should satisfy the truth table given in section 1.5.

The following truth table should be satisfied by the 3 input NAND gates,

0

Hoop
HOOO
HE OO
HOKFH
O
H O
O =

1
1)
o 0
i

SULMARY OF GATE OPERATICON 245
From these simple experiments with Compukit gates, you will note thats

An unconnected input terminal in a NOR or NAND gate can be ignored.

An unconnected input terminal in a NOR gate behaves as if it were
connected to a logic O.

A 3 input NOR gate can be used as a 2 input gate, and as a logic inverter
for performing the NOT operation, if unused inputs are left unconnected.’

An unconnected input terminal in a NAND gate behaves as if it were
connected to a logic 1.

A 3 input NAND gate can be used as a 2 input gate, and as a logic inverter
for performing the NOT operation, if unused inputs are left uncomnected.

FLOATING INPUTS IN 1OGIC CIRCUITS 2.6

Some confusion may be caused if any active inputs are left 'floating'
in logic circuits shown in the later sections, and incorrect results will be
obtained when verifying truth tebles. In all such cases, the inputs must be
appropriately connected to the logic O or logic 1 bus.

BOOLEAN ALGEBRA 3.1

You have now seen how logic equations can be writien using the sgymbols
of Boolean algebra. This algebra, although confusing at first glance, is an
extremely simple form of algebra and can be used for designing complex systems
such as digital computers. We will now tabulate some important relationships
and laws of Boolean algebra, meny of which will be obvious and many of which
may be easily derived.

Fundamental Special Properties

O=1
0+0=0 0.0=0 O+X=X X+ X=X
O+1=1 0.1=0 l+Xm=l X+X=X
1+0m=]1 1.0=0 0.X =0 XX =X
l+1=1 l.1=1 l1.X =X X.X =0
(E) =X

Commutative laws X+Y = Y+X
XY = Y.X

Associative law X(YZ) = (XY)Z
X+(Y+2)=(X+Y)+ 2

Distributive law X(Y+2) = X.Y+X.Z

De Yorgen's Laws (i) "The complement of the sum of two functions
is the product of their complements."

X+Y =XY (3.1)

(ii) “The complement of the product of two
functions is the sum of their complements."

Iy = X+Y (3.2)

Useful relationships a+a.b=a

a+d.b=a+b
Lany of these relationships have been mentioned previously in some form
or another, although some will be new to you. You will find these relationships
extremely useful in simplification of complex Boolean expressions.

VERIFICATION OF DE LORGAN'S LAWS 3,2

De Morgan's laws can be verified using the NOR and NAND gates available
in Compukit 1. The first law, equation(2.1),requires that

a+b = a.b

which can be implemented by using NOR and NAND gates in Compuldit 1.
The left hand side requires a NOR gate, and the right hand side can be implemented
by first inverting a and b and then using a NAND gate as shown in fig. 3.1

The second law, equation (3.2), is in fact a corollary of equatiocn (3.1)
and need not be proved separately. However, the second law can be verified by
using a very similar circuit shown in fige3.2 .

10

1)
+
ot

SED>e

FIG 3.1 asb FIG 3.2 a

o

APFLICATION OF BOCLEAN AIGEBRA TO 10GIC LIFICATION 383

Now we shall see how Boolean algebra can be applied to logic design, in
particular to the problem of simplification of logic circuits. This problem
occurs very frequently and can best be explained by an example.

(i) simplify the switching network shown in fig.3.3. This network uses four

switching elements and can be expressed
in terms of binary logic as followss

T= (a+b)(asc) (3.3)

a 3 i.e. the output T is logic 1 if switches
aorbd and a or ¢ are closed, Using
T Boolean algebra, we can show that thia
'S c circuit is equivalent to,
T=a+bdc (3.4)
FIG 3.3

Equation (3.4) can be implemented by
the arrangement shown in fig.3.4, and
uses fewer switches, It can also be
implemented using basic gates as shown
in fig.3.5.

Proofs that (a+b)(a+c) = a+be

We have (a+b)(a+c) = as+aceabsbe
= a(lsc+d)+be
= a+be (3.5)

Equstion (3.5) cenmot be, however, easily implemeted using NOR, NAND and
NOT gates in Compukit 1 without further manipulation. Again, we can use Boolean
algebre for this purpose and convert the equation to a suitable form for its
implementation Ly gates of the given type only.

De Morgan's Laws enable us to convert from a "sum forw" to a "product fomm"
i.e. frop OR (or NOR) implementation to NAND (or AND) implemegtation. The circuit
in fig.3.5, for exsmple, can be implemented using NANL or NOR gates alome if
necessary, The NAND gate implementation is obtained Yy further menipulation of
equation (3.5) as follows,
T=a+bc= a .b.c , using De Korgan's laws .

This last form cen be implemented using NAND gates as shown in fig.3.6.

)
L b
T P et
b c c
——
a a

FIG 3.4 FIG 35 FIG 3.6

(ii) Let us now try to simplify a logic function given by,
T= (a+b)e + &Dbe+c)+ D (3.6)
This function can be represented by the switching network shown in fig.3.7

1"
& We cen gimplify eq.(3.6) as followss

,_J__l
l_/b__J Tmac+bc+ab+3c+d

-(acq.a_ac)«»bcoéi'sﬂ»'u')

o =c{a+8)+bc+T(E+1)
=c+bec+b _
F ' ' sc(l:b)+b
1 - v =c+b (3.7)

The expression in eq.(3.7) can be
FIG 3.7 implemented by the switching network
= in fig.3.8, which is obviously a great
simplification of fig.3.7. Without the
help of Boolean algebra, it would be
extremely difficult to arrive at the network in fig.3.8 from the network in fig.3.7.
Equation (3.7) is however as yet not suitable for implementation using NAND getes
alone. We epply the De Liorgan's Laws to eq. (3.7) as follows,

Tw=ct+d = m) (3.8)

EQ.(3.8) can now be implemented using NAND gates as shown in fig.3.9.

FIG 3.8 FiG 3.9

(iii) simplify the following logic function,

T = a+abc+abc+ab+ad+ad -
= a(l+be)+ Eb(c+1)+a(d+d)
=a+8b+a

= a+ab
=a+b 23-9)
= a. 3.10)

Equations (3.9) and (3.10) are the simplest forms to which we can reduce
the original equation. EqQ.(3.9) is suitable for implementation using NOR gates,
and eq.(3.10) is suitable for implementation using NAND gates.

There are many other techniques for simplification of Boolean functions
The most important of these are the mapping methods due to Venn and Karnaugh,
and the tabulation method developed by Quine and McCluskey. Techniques such as
these can be found in more advanced texts on Boolean algebra and switching network
theory, but are not necessary for beginners.

WIRED~- OR LOGIC 4.1

Outputs of any two, or more, gates may be tied together to perfomm a
Wired=OR . The maximum number of gates which may be tied together in this
marmer depends on the design of particular logic gates, and for the gates in
Compukit 1 this is limited to four for NOR gates, and two for NAND gates. The
output from the Wired-OR NAND gates must further be fed to a NOR gate only.
With Wired-OR, the output is at logic 1 if all the outputs tied togethgr are
at logic 1, otherwise the output is logic O. Fig.4.l shows a Wired-OR implementation
of the logic function,

T = ab+od (4.1)

Inputs &, b and ¢, d are applied to two 2 input NAND gates, the outputs of

which are tied togethei‘ to perform the Wired-OR. The output T is logic O whenever
either a and b are both equal to logic 1, or ¢ znd 4 are both equal to logic 1.
Fithout the Wired-OR, we would require additional gates.

a ‘ N\
I T ey T c T
b : |/

d

d ot

FIG 4.1 FIG 4.2 FIG 4.3

Fige4+2 shows the Wirecf-OR method for implementing a 6 input NOR function
using two 3 input NOR gates. In this case, the Wired-CR acts as an expander for
the NOR gate. The logic function implemented in fig.4.2 is given by,

T = a+btc+a+exr? (4.2)

Any type of gate may be used, and the Wired-OR can also be achieved
between NOR and NAND gates. The 'fan-out' from a Wired-OR output is considerably
less then for ordinary gates. In certain logic designs, such as many types of
integrated circuits, the Wired-Ok is pemmitted on only certain types of gates.
In this case, it is usual to have the collector resistances of all but one stage
removed. Using this technique, you can Wired-OR upto eight gates in Compukit 1,
HoweveT, it is not recommended for you to do this.

The Wired-OR spproach simplifies the design and reduces the number of
gates required, Thus, the circuit in fig.3.9 can be implemented using this N
approach as shown in fige.4.3 and requires only two gates to provide both T and T.
We will now look at a number of other logic functions implemented using this
versatile technique.

COINCIDENCE CIRCUIT (Logic Comparator) 4.2

" The circuit shown in fig.4.4 detects the coincidence of signals a and b.
The output is at logic 1 if either both a and b are at logic 1, or both are at
logic O, This circuit can be used for comparing two. hinary bits.

b

ANTI-COINCIDENCE CIRCUIT (Exclusive-CR) 443
a

In this circuit, the output T is
at logic 1 if only ome of the two inputs b
is at logic 1. If bits a and b are equal
the output is logic O. Using Boolean al- [T
gebra, you can show that this circuit is
a logical complement of the previous one. Teamiab
The exclusive-OR function is commonly used
in a number of situations, and forms the
basis of many useful circuits.

PARALIEL CCMPARATOR FIG 4.5 4.4

It is obvious that by using multiple coincidence circuits, we can
compare binery words of as many bits as we like.

BINARY ARITHMETIC

Now you have already learnt many techniques commonly used in digital
computers. The circuits which you have learnt cen be used for ‘'decision meking'!
end control functions in the computer. Some of them, for example the exclusive-OR,
form +the basis of other circuits used in binary arithmetic. We will now examine
the basic approach used in digital computers to perform the arithmetic.

BINARY ADDITION 5.1

Addition is the most fumdemental arithmetic operation, which can be
in tum used to perform more complex operations such as subtraction, multiplication,
division, exponentiation etc. The simplest of the adding circuits is a thalf-adder'
shown in €ig.5.1.This circuit is used to add two one-bit binary numbers, It has
two inputs a and b, and there are two outputs which form the sum 8 and the carxry C.

7 You can easily show that the following

a truth table applies to binary addition of
bits a and b,

&
b

«»
Qaucop

0000
orOr
orrO
O

The logical equations can be written as,

S =cb+ab —p (5.1
C=2ab = a+d (5.2
FIG 5.1 < A :
which can be implemented by using
the exclusive-OR circuit, together with a 2 input NOR gate as shown in fige5.l.

FULL ADDER 5.2

For binary addition of numbers containing more than one bit each, carries
from the previous steges must be taken into account. The circuit used to perform
this is lmown as the 'Full Adder'., A full adder has three inputs and two outputs.
The inputs are bits a and b and the carry C from the previous stage. The outputs
are the sum S and the carry D to the next stage. The truth table for a full adder
is as follows,

a2 GEse ol 31, O L 1 a -
oS ORUINRO L I 0 1
GOm0 i0r 0L L. 2 L — |
2 HOESIE TR0 0 001 [D
D IOMIORROEMON S0) 1 o] —
The logical equations are X

given by,

S = abc+ abc +abd + abe
D = abC + abe + abe + abe
which can be simplified and) D&s
regrouped as follows,
c

8=(ab+ab)C + SEL*&T))E
D=ab + (ab+ ab)C FIG 5.2

The sum 8 and carry D are now expressed in terms of the outputs of a half
adder, and can be implemented using the alternative circuits shown in £ige5.2 «

TWO'S COMPIEMENT OF A 5 BIT NUMBER 5.3

Fige5.3 shows a oircuit for computing the two's complement of a three
bit number using Wired-OR, The logic equations are,

A = &

B= {avenb)

cm T+abe

which cen be implemented by the circuits shown in figeHe3e
A
a

% -
-1- FIG 5.3
g } &
his bttt ¢
i i i it and we
A very important pert of the digital computer is the memory unit
shall now look at the basic circuits which can 'rememb?r'. There are mainly two
types of memories used in modern computers. The very high sgeed short term
memories such as those used in performing arithmetic operations and contrc_)l
functions, and the medium to long term memories which are gmerally used :{.n’th.e‘
storage of date and programmes. The former types are invariably 'electronic units,

whilst the latter depend upon the electromegnetic properties oi..‘ ferrite.materials
for their operation. Here we shall be concerned with 'electronic' memories only.

MEMORY

A SINPLE MEMORY 6.1

The simplest form of electronic memory used in computers consists of
'latching' circuits. Cne such ecircuit can be constructed by comnecting two
logic inverters as shown in fig.6.1. The outputs Q and § ere always complementery
to each other, and the 'memory' can be set by applying 2 logic O through the
'set! and 'reset' push buttons_as shown. When the logic O is applied through the
set terminal, Q goes to 1 and Q goes to O. The reset push button makes Q equal to
0 and § equal to 1 again when depressed.

Using gates in Compukit 1, you can
4 ofLset build a 'seven bit' memory using this
b gt principle. The push buttons are not really
necegsary and logic O can be applied to
Reset set or resét the memory by momentarily
pul touching the appropriate terminal by a
0o wire whose other end is connected to the
logic O bus. These circuits will remember
FIG 6.4 which button was last depressed, hence
E the neme 'memoTy's

THE R-S FLIP FLOP CIRCUIT 6.2

Basic NOR and NAND gates can also be used to fom !latching! cirt.:uits
which can assume one of the two states of being 'set' or 'reset' as,req\ured.
These gates are comnected 'back to front' as shown in figse6.2 and 6e3.

nﬂaset ﬂR's“
1 - {2 e A e (0 5
Set
a e L
—— it Y e Tt |

FIG 6.2 FIG 6.3

In fig.6.2, two 2 input NOR gates are comnnected to form a l-set
BR-S Flip Flop. The two_inputs, 8 and R are the set and reget inputs and there
aTe two outputs Q and Q as before., Operation of this circuit is very similar to
the previous one, and it 'remembers' which button was last depressed. This type
of memory is, in fact, the simplest type used in digital computerse.

15
The logical equations for an B-8 flip flop cen be written thus,

R 1001 R1010
SoN LGN T S 0110
Q 1090 Q 1 0 Q1
0170 0171

R-8 Flip flop using R-S Flip flop using
two NOR gates two NAND gates

You will notice that in the last column of both these tables, Q and Q
have been listed as having the same logical states. This is, obviously, contrary
to our definition and is consequently not allowed. Thms, for the flip flop in
fig.6_.2 the R and 8 inputs should never be allowed to have logical states 1 at
the same time, and for the flip flop in fig.6.3 they should never be at logic O
simulteneously. This restriction severely limits the application of R-8 flip
flop end to overcome this difficulty a 'clocked' flip flip known as the J-K type
has been developed.

BINARY COUNTING 6.3

In binary counting, the first digit has only to change alternately from
1 to O and O to 1 on each count. This will be obvious to you by looking at the
binary numbers in a previous section. The second stege, also, changes alternately
from 1 to O and O to 1 each time the first stage changes from 1 to 0, and so on.
Various stages of the binary counter will assume states as shown in fig.6.4 as
the pulses to be counted arrive.

1
weur ! __[‘U'U'Lﬂ_]']_ﬂ_m It is quite clesr that the subsequent

Qi 58 18T stages function in exactly the same
manner as the first stage. The first stage
can be easily designed if the pulses to

1ot s‘age1 —rLrU—l—,—u be counted could be alternately routed to
0 the R and S inputs of the flip flop showm
in fig.6.2. Consider the circuit shown in
1 fig.6.5. The concept behind this circuit
g 0 __[—_l__—[_—]— is that if an input is not present, the
points R and S will both be at logic O and
2 1 ____J——_‘___ Q and @ will remzin in the last state in_
' il which they had been set. Thus, if Q and Q
5! : were at logic 1 and O regpeciively before
the input pulse atrrived, R would go to logic 1 on arrival of the pulse making Q=0
end @=1. The input pulse has thus changed the state of the flip flop. We can
pursue a similar argument to show that the next input would again cause a similar
chenge meking it a binary counting stage. Though this circuit appears to be quite
feasible at first sight, it is impractical in the form_sghown and will not work
A little thought will show you that the outputs Q and Q will continually oscillate
from 1 to O and O to 1 as long as the input pulse remains at logic 1, making it
thus useless as a binary counter, This circuit can be made to work if the input
pulse duration is made sufficiently small and a 'delay' is added to the feedback
loops in fig.6.5. We shall now consider an alternative approach to the design
of a binary counter.

The circuit shown infig.6.7aworks on the principle of 'remember and add’'

R
R a
Tr—Q
1=-Set
1 flip=tiop

n
INPUT = s

s FIG 6.6

FIG 6.5

and can be used as & binary counter. When the input pulse is at logic O, the
flip flops A and B ‘copy' the logic states of @ and Q respectively, and remain in
this state till the input pulse changes again. When the input pulse goes to logic
1, outputs Q end Q are then set to the same logic states as A and B. Thus the

sequence of operations can be illustrated as in fig.s.TbeDue_to the 'cross-over!
in the information exchange loop , the logic statea of Q and Q are changed each
time an input pulse is received.

For testing the binary counter; it is necessary to generate a 'clean! pulse.

If a change-over switch is veed to control an R-S flip flop, fig.6.6, the output
from the latter is free from 'contact-bounce! thus producing a clean pulse.

s F}D ot rosde "

% 5 ?Is cic Cl}!l? {14 [1l<]
T A
— < 4)% < m <’I\ nl:
1 iNPUT FIG 6.7a FIG 6.7b
A MODIFIED R-S FLIP FLOP 644

; ﬂxe_R-S flip %‘lop shown in fig.6.2 can be modified to accept two logic
1's at the input terminals simultaneously by additional logic as shown in fig.6.8.

P o

Q Qe

o1
HOHKFHOO W

HOHOKRO w
HHOOOO
HHOOHO

FIG 6.9
FiG 6.8

a5 T?Je corresponding ‘truth table is shown in fig.6.9. This circuit is somewhat
similar in operation to the J-K flip flop mentioned before, except that it is not
'clocked'. For description of the J-K type, you are asked to refer to more
advenced texts.

POLYFIOP 6. 5

A polyflop is a logic circuit that has three, or more, states and will
:remember' the last of the several states to which it had been set. A flip flop
is a special case of a polyflop, where the mumber of possible states has been
reduced to only two.

Poly flops can be constructed using NOR
or NAND gates. The fundamentel principle ofa
__P-,_ polyflop is that each gate must have an
input from all other outputs except its omn.
A three-state polyflop is shown in fig.6.10
using NAND gates. Any stage can be set to
a logic O by momentarily applying logic O
to the output temminal as shown. All other
stages remain at logic 1.

Polyflops are not generally used in
digital computers, but in many circumstances
can form & more efficient form of memory
than R-8 flip flops.

S

FiG 6.10

Addendum
NOTES ON COMPUKIT 1 DELUXE MODEL AND HOW TO USE IT

Compukit 1 Deluxe Model is a teaching aid for computer electronics, digital
logic and Boolean algebra and is similar to the standard model of Compukit 1 in
many respects. It is however a more sophisticated teaching aid and is mainly in-
tended for use in schools, technical colleges and industrial training organisations.

The deluxe model is housed in a cabinet with an on/off switch on one side.
The cabinet also carries the battery, making it an exceptionally easy to use port-
able instrument.

This model has a five switch 'Input Register' on the top left hand side which
is used to provide five independent logic inputs to the remaining system. - These
logic inputs appear on the two terminal pins immediately to the left of the par-
ticular switch. A 'logic 0'is obtained when the switch is up and a 'logic 1' is ob-
tained when it is down.

The 'Output Register'on the top right hand side consists of four miniature
logic indicator lamps, which brighten up when a logic 1 input is applied to the
terminal pins immediately under the bulbs.

The power is switched on by pulling the on/off switch lever towards you.
The filaments of the bulbs in the output register will now glow slightly. The
power source used in this model is the 4% volt battery, Ever Ready Type 126,
or equivalent, and can be replaced by removing the back of the cabinet, if
necessary. If an external power source is used, it should provide filtered direct
current at no greater than 6 volts. The current required by the deluxe model is
about 0.3 amperes. It is advisable that the power supply should be short circuit
proof in order to avoid accidental damage.

The electronics in Compukit 1 Deluxe Model is 'student proof' and will not
normally get damaged due to accidental incorrect patching, provided that the re-
commended 4% volt battery, or equivalent, is used.

The logic on the deluxe model consists of two 3-input Nor gates, six 2-input
Nor gates, two 3-input Nand gates and six 2-input Nand gates. The logic used is
'positive logic' with logic 1 equal to 4 volts nominal and logic 0 equal to 0 volts
nominal, The maximum fan out is about ten. For simulating larger systems,
two or more units may be connected together by patching the battery terminal

pins.

All circuits given in the instruction book for the standard model of Compukit
1 can also be made on the deluxe model, and many more circuits can of course be
constructed by the imaginative student and teacher. Use of associated accessories,
such as the task sheets and transparencies for overhead projection, is strongly re-
commended for classrooms and teaching laboratories.

ASSEMBLY PROCEDURE FOR SOLDERLESS PATCH LEADS WITH HEAT
SHRINKABLE INSULATION SUPPLIED IN KIT FORM (Compukit 1 standard
model only):

The patch lead kit contains about 24 feet of flexible wire, 48 silver plated
socket ends and small lengths of heat shrinkable plastic sleeving in assorted colours.
The assembly procedure is as follows:

1, Cut the wire in equal lengths of about 10-12 inches as required and strip about
3/8" insulation from each end. Tin the stripped ends using a little solder and
solder the metal sockets to each end. The terminal pins on an assembled kit
can be used to hold the sockets during soldering.

2, Cut the plastic sleeving in about %" lengths and shrink it over the metal socket
ends to grip tightly by heating for a few seconds using hot air, or by holding
near a low flame.

The patch leads are now ready to be used to make solderless connections.

Copyright reserved. Frinted in United Kingdom 1970.
This book, or parts thereof, may not be reproduced
in any form without permission of Limrose Electronics.

